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Abstract 

Experiments in open channel flow are important especially to Civil Engineering students. Flow 
rate is commonly measured in an open channel by using a weir. Weirs that are used in our fluid 
mechanics lab include a V-notch weir, a suppressed edge weir, and a contracted edge weir. Each 
of these weirs has been studied extensively, and calibration methods/results have been published 
in many undergraduate fluid mechanics texts. These weirs are modeled mathematically using an 
equation relating flow rate to liquid depth over the lowest point of the weir. In an effort to find an 
additional weir for study, the semi circular weir was proposed. Relating flow rate to liquid depth 
for this weir involves an infinite series. To make the semi circular weir useful in the lab would 
require the derivation of a single term, power law equation to relate flow rate to depth. The 
objective of this study is to derive such an equation, and to present data obtained for purposes of 
verification. Finding such an equation and avoiding an infinite series permits the use of the semi 
circular weir, as an additional weir experiment, in the fluid mechanics lab. The results indicate 
that the semi circular weir is a worthwhile addition to the study of weirs. 
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Introduction 

Our fluid mechanics laboratory compliments the lecture course in that the student is able to 
perform experiments that strengthen lessons learned in the course itself. Experiments include 
measurements of: 

• Viscosity, density, surface tension 

• Force exerted on a submerged plane surface 

• Flow rate versus pressure loss in various pipeline meters 

• Flow rate versus depth for various weirs 

Experiments involving weirs are important especially to Civil Engineering students. Weirs that 
are used include a V-notch weir, a broad crested weir, and a contracted edge weir. Each of these 
weirs has been studied extensively, and calibration methods/results have been published in many 
undergraduate fluid mechanics texts. Each of these weirs is modeled mathematically using an 
equation relating flow rate to liquid depth over the lowest point of the weir. Equations are single 
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term, power law equations1. The semi circular weir, however, has received attention, but is not 
used extensively. The semi circular weir is the subject of this study.  

The theoretical equation for flow over a semi circular weir involves a derivation of the 
relationship between flow rate and depth. Kadlubowski et al.2 provide equations for what is 
referred to as overflow devices; these include rectangular, circular, parabolic and triangular 
shapes. The equation for flow over a semi circular weir is stated, and the solution is expressed in 
terms of elliptic integrals of the first and second kinds. The efflux of flow over the weir is said to 
be indeterminate, although a discharge coefficient of 0.59 is stated.  

Dodge3 obtained a theoretical equation for circular sharp crested weirs, but this result is 
unpublished. The results of Dodge’s work have been reported by Stevens4.  

Vatankhan5 studied circular weirs that would be located in a vertical wall of a channel. The 
equation given is, again, in terms of elliptic integrals, but can be solved numerically. Vatankhan 
quotes data obtained by Greve6, but concludes that there is no simple and accurate theoretical 
discharge equation in the available technical literature.  

Irzooki et al.7 obtained data for flow over weirs with semicircular openings. Data were obtained 
for four different radii of openings. These weirs were calibrated against a rectangular sharp 
crested weir. A dimensional analysis was performed to derive a calibration equation for the semi 
circular weir. Data from previous studies4-6 were then quoted and then plotted using the 
calibration results. Irzooki et al.7 plots volume flow rate over the weir versus the ratio of depth to 
cutout diameter. Results for theoretical flow rate include the elliptic integrals mentioned 
previously. 

The objective of this study is to develop an equation for the theoretical discharge of flow over a 
sharp crested semi circular weir of the same format as that for other weirs. Typically, flow over a 
weir is described by an equation of the form: 

 Q  = C1H n 

in which C1 and n are constants that are determined by obtaining data on the weir itself,; i.e., 
calibrating the weir. The format of this equation can be derived by using a binomial series 
expansion, and avoid evaluating the elliptic integrals obtained in previous studies. This process 
will allow students to successfully calibrate a semicircular weir in the undergraduate fluid 
mechanics laboratory.  

Theory 

Figure 1 shows a definition sketch of a semi circular weir. The liquid depth above the bottom of 
the opening is H. The radius is R, and the x-z axes are shown. We define a distance z from the 
free surface to an element of thickness dz. Assuming frictionless flow of an incompressible fluid, 
the volume flow rate through dz is given by 

 dQ  = V dA   (1) 
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Figure 1. Cross section of a semi circular weir. 

Applying Bernoulli's equation to the cross section gives for the velocity 

 V  = (2gz)1/2 (2) 

The area of the element is  

 dA  = 2xr dz (3) 

The distance xr may be obtained from: 

 xr2  + zr2  = R2  

or 

 xr2  = R2  – zr2 (4) 

and zr is found with 

 zr  = z  – R  – H (5) 

Substituting Equations 2–5 into 1 gives 

 dQ  = V dA  = (2gz)1/2 (2xr dz) 

or 

 dQ  = 2(R2  – (z  + R  – H)2)1/2 (2gz)1/2 dz 

Integrating this equation from 0 to Q, and correspondingly from 0 to H, we write 

 Q  = 
    

€ 

0

H

∫ 2(R2  – (z  + R  – H)2)1/2 (2gz)1/2 dz  

Factoring the constants,  
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 Q  = 2(2g)1/2 

    

€ 

0

H

∫ z1/2 [R 2  – (z  + R  – H)2]1/2 )dz 

Factoring radius R from the integrand, we obtain 

 Q  = 2R(2g)1/2 

    

€ 

0

H

∫ z1/2 





1  – 
(z  + R  – H)2

R2  
1/2

  dz (6) 

Continuing further requires the integrand to be changed into another form. Typically, we would 
encounter elliptic integrals. However, the expression in square brackets may be rewritten using a 
binomial series expansion (Newton's  binomial theorem): 

 (1 – x2)1/2  = 1 – 
x2

2    – 
x4

8    – 
x6

16  …  

The term in square brackets then is written as 

 





1  – 
(z  + R  – H)2

R2  
1/2

   = 1 – 
(z  + R  – H)2

2R2     – 
(z  + R  – H)4

8R4    – 
(z  + R  – H)6

16R6    …  (7) 

The second term in the series is expanded with minor effort: 

 
(z  + R  – H)2

2R2    = 
z2  + 2Rz  – 2Hz  + R2  – 2HR  + H2

2R2   

Then, 

 1 – 
(z  + R  – H)2

2R2    = 1 – 
z2

R2   – 
z
R   + 

Hz
R2   – 

1
2   + 

H
R   – 

H2

2R2    

or 

 1 – 
(z  + R  – H)2

2R2    = 
1
2   – 

z2

R2   – 
z
R   + 

Hz
R2   + 

H
R   – 

H2

2R2    

Substituting this result into Equation 7, 

 





1  – 
(z  + R  – H)2

R2  
1/2

   =  
1
2   – 

z2

R2   – 
z
R   + 

Hz
R2   + 

H
R   – 

H2

2R2    

We recall that this result includes only the first two terms of the series in Equation 7. We 
continue by substituting into Equation 6, which can now be integrated term by term: 

 Q  = 2R(2g)1/2 

    

€ 

0

H

∫ z1/2 



1

2  – 
z2

R2  – 
z
R  + 

Hz
R2  + 

H
R  – 

H2

2R2   dz 
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 Q  = 2R(2g)1/2 

    

€ 

0

H

∫ 





z1/2 1
2  – 

z5/2

R2   – 
z3/2

R   + 
Hz3/2

R2   + z1/2 H
R  – z1/2 H2

2R2  
 
dz 

 Q  = 2R(2g)1/2 





z3/2 1
3  – 

2z7/2

7R2   – 
2z5/2

5R   + 
2Hz5/2

5R2   + z3/2 2H
3R  – z3/2 H2

3R2

H
 
0

  

Substituting the upper limit,  

 Q  = 2R(2g)1/2 





H3/2 1
3  – 

2H7/2

7R2   – 
2H5/2

5R   + 
2H7/2

5R2   +  
2H5/2

3R   –  
H7/2

3R2
  

Combining terms with like exponents, 

 Q  = 2R(2g)1/2 [H3/2 (1/3) + H5/2 (2/3 – 2/5) + H7/2 (2/5 – 2/7 – 1/3)] 

which becomes 

 Q  = 2R(2g)1/2 



H3/2

3   + 
4H5/2

15   – 
23H7/2

105    

Using only the first two terms in the binomial series, this equation has the following form: 

 Q  = C1H3/2  + C2H5/2  + C3H7/2 (8) 

where the Ci values are constants. Higher order powers of H will surface if more terms are used. 
The objective now becomes finding values for the constants, and this will depend on data 
obtained in the laboratory. In what follows, results of an experiment will be presented to 
determine the calibration constants for those that appear in Equation 8.  

Experimental Procedure 

Figure 2 is a sketch of the apparatus used in obtaining data. It consists of a tank of water flanked 
on both sides with centrifugal pumps. Each pump discharges into a pipe containing a turbine 
meter and a flow control valve. Water is pumped into a head tank and flows underneath the head 
gate into the flow channel. The channel width is 12 in and it is 15 ft long. Water travels over the 
weir and makes its way back to the sump tank. The apparatus was manufactured by Engineering 
Lab Design (eldinc.com). The flow meters were manufactured by Onicon (onicon.com) and have 
been calibrated. The weir has been manufactured in-house, and has a radius of 9.125 in. Depth 
measurements far upstream of the weir were made with a point gage supplied with the open 
channel device.  

Results 

Sixty-nine data points of flow rate versus depth were obtained, and are graphed in Figure 3. The 
horizontal axis is the depth in ft, and the vertical axis is water flow rate in gallons per minute.  
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Figure 2. Schematic of the apparatus used in this study. 
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Figure 3. Data points; flow rate over a semi circular weir as a function of upstream 
water height. 

The best fit curve of these data are: 

 Q  = 426.8 H1.55 R2  = 0.9804 (9) 

Educational Value 

The open channel flow device in the fluid mechanics laboratory was supplied by the 
manufacturer with several different weirs: V-notch, contracted edge, and suppressed edge. The 
calibration equations for these weirs have the same form, namely a constant x height to a power: 

 V-notch Qac  = CvnC1H5/2  = CH5/2 
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 Contracted edge Qac  = CcC1H3/2  = CH3/2 

 Suppressed edge  Qac  = CsC1H3/2  = CH3/2 

The constants Cvn, Cc and Cs are discharge coefficients that take into account frictional effects 
not included in the theoretical equations. The product of the discharge coefficient and the 
constant C1 (= C) for each weir are to be determined by experiment. Thus, student groups would 
obtain many data points on actual flow rate (Qac) and height (H), and then determine the value of 
the constant C in the preceding equations.  

The addition of another weir to this ensemble is thought to be most beneficial to those students 
taking fluid mechanics and those taking open channel hydraulics. So this study was undertaken 
in order to determine whether flow over a semi circular weir could be added to the lab. What 
precluded its addition heretofore was the theoretical equation for this weir, which involved an 
infinite series. Using merely two terms of this series yielded results involving the height raised to 
the 3/2, 5/2 and 7/2 power (Equation 8): 

 Qac  = Csc(C1H3/2  + C2H5/2  + C3H7/2) (8)  

If data on the semi circular weir would indicate that any of these terms fit the results 
appropriately, then this weir could be added without difficulty. The results indicate that the 
actual flow rate equation is: 

 Qac  = CH3/2 

Although not demonstrated here, further manipulation of the data shows that the coefficients of 
H5/2 and H7/2 reduce to zero very quickly.  

Uncertainty Analysis 

A detailed uncertainty analysis was not performed for this study, although the data obtained can 
be used to perform one. This is left to the students who are taking the lab. However, depth of 
liquid was measured with a depth gage, whose measurements are to the nearest 16th of an inch. 
The flow rate was determined with a turbine-type meter installed in the flow line, which was 
calibrated by the manufacturer to within 5% of the mean value.   

Conclusions 

The objective of this study was to obtain a relationship for flow rate over the semi circular weir 
in terms of the upstream height. It was desired to determine a single term equation such as  
Equation 9. The mathematical model for flow over the weir yielded several terms, all expressed 
as the product of a constant and the liquid height upstream of the weir. The method presented 
indicates that the exponent of the result is an integral multiple of 3/2 (approximately). The 
resultant equation allows the student to obtain data and derive an equation without resorting to 
elliptic integrals or an infinite series. This approach is ideal for the undergraduate fluid 
mechanics lab.  
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