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Abstract 

Characteristic of classroom instruction in Engineering curricula is highly uni-directional and 
passive, and subsequent assessment of student learning effectiveness depends on specific 
instruction delivery mechanism and /or level of learning readiness by the recipient, students.  
Also, conventional assessment methodology is largely based on discretized quantification via test 
and assignment scores, which the very assessment efforts become reduced to mere proportional 
comparisons of posterity of events at a sample level that do not guarantee much needed 
reproducibility of desired effects or improvements under similar or the same measure 
implemented to the course in interest.  The motivation of this research is to introduce a new 
pedagogical assessment framework based on statistical Randomized Factorial Design (RFD) 
Assessment Framework concept to capture true student feedbacks at system-level so that 
assessment findings can be correctly used to reproduce gains in student learning effectiveness in 
the future.  Thus this new pedagogical assessment framework is based on an approach of logical 
deduction with clarity, compared to conventional assessment framework of an additive and 
qualitative reasoning approach, to identify what works and what does not. 
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Introduction 

Compared to other disciplines, characteristic of classroom instruction in Engineering curricula is 
highly uni-directional and passive1,2, and subsequent assessment of student learning effectiveness 
becomes equally hinged on a specific instruction delivery mechanism as well as the level of 
learning readiness by the recipient, students.  Furthermore, conventional assessment 
methodology intended to measure the learning effectiveness typically focus on discretized 
quantification of student performance via test and assignment scores, and most of time the very 
assessment efforts become reduced to mere proportional comparisons of posterity of events that 
do not guarantee the reproducibility of desired effects or improvements under similar or the same 
measure implemented to the course in interest.  Then the question becomes that are we capturing 
true response of student learning effectiveness in the first place, and what would be the best way 
to ensure the maximum likelihood of accomplishing desired improvement in classroom 
instruction by reflecting findings from such assessment. 
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The motivation to pursue this research is to introduce a new pedagogical assessment framework 
based on statistical Randomized Factorial Design (RFD) concept to capture true student 
feedbacks and subsequent learning effectiveness gain at system-level, instead of sample-levels.  
So that assessment findings can correctly identify true ‘positive’ factors in instruction and its 
delivery derivatives and also be able to discern ‘false-positive’ from the findings by using 
statistical methods.  Correctly identified and verified true ‘positive’ factors are then used to 
reproduce gains in student learning effectiveness in the course of interest in the future.  Thus this 
new pedagogical assessment framework is based on an approach of logical deduction with 
clarity, compared to conventional assessment framework of an additive and qualitative reasoning 
approach, to identify what works and what does not. 

In this paper, proposed concept and methodology of the Randomized Factorial experimental 
design3, criteria in establishing treatment- and block-level contrasts for student learning 
effectiveness assessment4, procedure to incorporate factorial multicolinearity into assessment 
framework5 to capture relevant factors including possible stratification in student demography, 
and subsequent p-value based decision criteria for identifying true reproducibility factor(s) 
influencing student learning effectiveness at system-level, will be discussed. 

Randomized Factorial Design (RFD) Assessment Framework 

The core of the proposed Randomized Factorial Design (RFD) Assessment Framework consists 
with a standard Randomized Complete Block (RCB) experimental design6, augmented by 
Factorial multicolinearity to reflect effect of student demographic factors. 

Randomized Complete Block (RCB) experimental design is composed of treatment and block 
components -- dividing students enrolled in course, either temporal sequence, i.e., different 
semester and/or year, or same semester with multiple sections including a minimum of one base 
reference section as “control,” or spatially distributed over multi-institutes, or traditional 
instruction vs. online/open access delivery settings, etc. (Treatment), and different levels of 
classroom instruction, both topic variation and delivery mechanism settings such as traditional 
instruction vs. online/open access delivery or traditional instruction vs. traditional augmented 
with additional supplements such as computer-based or project-based, etc. (Blocks).  Elements of 
student learning effectiveness assessment would consist of common quantitative measures 
including test, quiz, lab report, exam scores and final grade. 

 yij = μ + τi + βj + εij  (i = 1, …, Treatments; j = 1, …., Blocks) 

where 

 yij  = Response on (i, j) th Obs. (Student Learning outcomes – test, quiz, lab report, exam  
  scores and final grade) 
 μ  = Overall mean, student learning effectiveness 
 τi  = i th Treatment effect (temporal and/or spatial composition of class and/or sections) 
 βj  = j th Block effect (different levels of classroom instruction, both topic variation and  
  delivery mechanism settings) 
 εij  = Random error due to (i, j) th observation where ε~NID(0,σ2) by Gaussian Markov   
  theorem 
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The main objective of the RCB design is to statistically analyze and assess student learning 
effectiveness by using Test of Hypotheses (T.H.) so that students' learning can be objectively 
measured instead of subjective “did quite well, so-so, not look good and so forth.”  Since student 
enrollment to subject courses is generally handled centrally by institute’s Registrar’s Office, and 
the instructor(s) would have no control or knowledge as to who is registering in which section, 
one can assume that student composition to a given class/section is a random process and ensure 
compliance to the Family Educational Rights and Privacy Act (FERPA)7.  Advantage of the 
RCB design includes a flexibility to construct spatiotemporally “unbalanced” treatment and 
block levels so that variations in frequency of class offering or total number of sections offered 
each time can be assessed and evaluated without depreciating the validity of analysis results. 

Assessment outcomes are then tested first for normality using standard Shapiro-Wilk W-
statistics8 at 95% level of confidence (α=0.05) followed by the Multiple Means Comparison 
(MMC) method with Duncan’s Multiple Range Test (MRT) 9 to compare the level of student 
learning effectiveness under treatment and block levels.  In case of non-normality, a median-
based one-way, pairwise nonparametric statistics, Wilcoxon Rank Sum statistics10,11,12, can be 
employed alternatively.  Subsequently, a series of cascade Test of Hypotheses on central 
tendency of treatment and block level responses are then tested to compare and measure the 
student learning effectiveness under specific combination of classroom instruction method 
implemented.  For example, typical Test of Hypotheses (T.H.) would be constructed as; 

TH on Dominance in Central Tendency among “Control” vs. “Experiment” group  
learning effectiveness (Treatment) 
 
H0: All C.T.[Treatment]i are statistically equal 
Ha: At least one or more C.T.[Treatment]i is not equal (i = 1, 2, 3) 

 
TH on Dominance in Central Tendency among “Instruction method j” vs. “ Instruction method  

j+1” on learning effectiveness (Block) 
 
H0: All C.T.[Block]i are statistically equal 
Ha: At least one or more C.T.[Block]j is not equal (j = 1, 2, 3) 

 

Once the initial assessment of student learning effectiveness under implemented  Treatment and 
Block level settings in classroom instruction completes, a secondary Factorial multicolinearity 
analysis5,6 would be performed to correlate additional effect of student demographic factors and 
their sensitivity toward learning gains identified the initial assessment through RCB design. 

 yij = μ + τi + βj + τβij + εij  (i = 1, …, Treatments; j = 1, …., Blocks) 

where 

 yij  = Response on (i, j) th Obs. (Student Learning outcomes influenced by demographic  
factors) 
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 μ  = Overall mean, student learning effectiveness 
 τi  = i th Treatment effect (degree program-specific demographic factors) 
 βj  = j th Block effect (person-specific demographic factors) 
 τβij  = Response on (i, j) th Obs. (multicolinearity, significant compounding factors  

incurring gains in student learning effectiveness) 
 εij  = Random error due to (i, j) th observation where ε~NID(0,σ2) by Gaussian Markov   
  theorem 

 
H0: All C.T.[Treatment i | Block j (Demographic Factor/Factors)]k are statistically equal 
Ha: At least one or more differ (i, j, k = 1, 2, ..., n) 

 

Suggested student demographic factors4 to evaluate whether such factors contribute toward the 
student learning effectiveness gain under implemented classroom instruction settings are 
cumulative GPA, SAT Math score and High school GPAs (degree program-specific 
demographic factors) and student age, gender, ethnicity and class (person-specific demographic 
factors), and additional relevant factors can be incorporate as needed with flexibility.  Use 
guideline of selected student demographic information should comply with the Family 
Educational Rights and Privacy Act (FERPA) guideline7.  Factorial multicolinearity analysis 
outcomes are then evaluated by using similar procedural and componental sequence to isolate 
and identify individual or colinear effect toward student learning effectiveness gain. 

Conclusion 

The goal of proposed Randomized Factorial Design (RFD) Assessment Framework concept is to 
objectively capture true student feedbacks and subsequent learning effectiveness gain at 
reproducible system-level, instead of temporal sample-levels.  So that assessment findings can 
correctly identify true ‘positive’ factors in instruction and its delivery derivatives applicable to 
various student compositions and demography through Factorial multicolinearity analysis3, and 
also be able to discern ‘false-positive’ from the findings by using statistical methods.  Correctly 
identified and verified true ‘positive’ factors are then used to reproduce gains in student learning 
effectiveness in the course of interest in the future.  Thus this new pedagogical assessment 
framework is based on an approach of logical deduction with clarity, compared to conventional 
assessment framework of an additive and qualitative reasoning approach, to identify what works 
and what does not. 
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